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Abstract In internally coupled ears (ICE), the displace-
ment of one eardrum creates pressure waves that propagate
through air-filled passages in the skull, causing a displace-
ment of the opposing eardrum and vice versa. In this review, a
thoroughmathematical analysis of themembranes, passages,
and propagating pressure waves reveals how internally cou-
pled ears generate unique amplitude and temporal cues for
sound localization. The magnitudes of both of these cues
are directionally dependent. On the basis of the geometry
of the interaural cavity and the elastic properties of the two
eardrums confining it at both ends, the present paper reviews
the mathematical theory underlying hearing through ICE
and derives analytical expressions for eardrum vibrations as
well as the pressures inside the internal passages, which ulti-
mately lead to the emergence of highly directional hearing
cues. The derived expressions enable one to explicitly see the
influence of different parts of the system, e.g., the interau-
ral cavity and the eardrum, on the internal coupling, and the
frequency dependence of the coupling. The tympanic fun-
damental frequency segregates a low-frequency regime with
constant time-difference magnification (time dilation factor)
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from a high-frequency domain with considerable amplitude
magnification. By exploiting the physical properties of the
coupling, we describe a concrete method to numerically
estimate the eardrum’s fundamental frequency and damping
solely through measurements taken from a live animal.
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1 Introduction

Internally coupled ears, or ICE, is a terrestrial vertebrate hear-
ing system inwhich the two tympanicmembranes (eardrums)
are functionally coupled by anatomical connections through
the skull. It occurs in most frogs, lizards, alligators, and
birds; conservatively, it is estimated to be more than 15,000
species or roughly half of the terrestrial vertebrates. In
ICE, the eardrums are driven by a combination of exter-
nal sound pressure and internal cavity pressure resulting
from the coupled vibration of the opposite eardrums (Autrum
1942; Christensen-Dalsgaard andManley 2005; Vossen et al.
2010); cf. Fig. 1b, c. If the distance L between the eardrums
(the interaural distance) is small, the time difference between
excitationof the opposingmembranes due to an external pres-
sure is too small for effective neuronal processing, precluding
sound localization through temporal cues. Furthermore, for
many ICE animals, the interaural level (or intensity) dif-
ference (ILD) is negligible, irrespectively of the source
direction. With ICE, however, an animal can amplify the
time differences as well as generate considerable (e.g., about
20dB) direction-dependent amplitude differences between
the eardrum vibrations. Thus, ICE enables even animals with
small interaural distance, say a few cm, to localize sound.
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Fig. 1 Top Leopard gecko—a typical animal with ICE. The location
of the eardrum or tympanic membrane (TM) on the side of its head has
been highlighted. Bottom left Close-up of its head, where its eardrum
as well as the embedded extracolumella (brighter protrusion, top-left),
can be discerned clearly. The vibrations of one the eardrums excite the
air inside the cavity, which in turn influences the vibrations of the oppo-
site eardrum and vice versa. Bottom right Close-up of the eardrum. The
lighter-colored protrusion on the top-left of the tympanum is the extra-
columella, which transfers the eardrum vibrations, via the columella, to
the cochlea; cf. Figs. 3b and 6a, b. Photograph courtesy of Prof. Frieder
Mugele (University of Twente). a Leopard gecko, b close-up of the
Leopard gecko’s head, c close-up of the eardrum

Whether and how it does so neuronally is not a focus of the
present paper, aside from a few remarks in the discussion
(Sect. 5).

An earlier analytical paper (Vossen et al. 2010)was formu-
lated to explain a set of experimental data gathered froma few
selected species of Gekkonid lizards (Christensen-Dalsgaard
and Manley 2005). More recently, we have presented a gen-
eral model of ICE (Vedurmudi et al. 2016) intended to
be applicable to all ICE animals. The format of the work
presented by Vedurmudi et al. (2016) precluded a full pre-
sentation of not only the mathematical arguments, but also
some of the interesting, and biologically relevant, issues that
arise from a consideration of ICE. The present contribution
presents a review of the full model, an expansion into topics
not covered by Vedurmudi et al. (2016), and a more detailed
derivation of some of the fundamental concepts.

There is a substantial difference between the mathemati-
cal modeling presented in the present Review, based on only
two predecessors (Vossen et al. 2010;Vedurmudi et al. 2016),

and the older literature that is comprehensively described
by Fletcher (1992) and also running under the name of
“pressure-gradient receiver.” As shown elsewhere (vanHem-
men et al. 2016), this name is definitely not what ICE boils
down to. Actually, it is just the opposite since the ensuing
differences are not infinitesimal, which one would need for
taking a gradient, but as large as possible. Whereas the lat-
ter theory is linear-response theory with impedances as fit
parameters, the present ICE analysis is based on the mere
geometry of the interaural cavity and can do without any fit
parameter.

Previous experimental work (Manley 2000) has shown
that lizards have two distinct populations of cochlear hair
cells—one that responds to amplitude cues and the other to
temporal cues. Ultimately, these two hair-cell populations
both project bilaterally, giving the organism a neuronal tem-
plate to contrast both the amplitude and temporal patterns
(Szpir et al. 1990) arising from the tympana. We are follow-
ing (Jørgensen et al. 1991) in postulating an algorithm for
determining amplitude (level) differences. More specifically,
we assume that this is done by a neuronal subtraction of log-
arithmic vibration amplitudes of the two membranes. The
biological physics is that of hair-cell response being gov-
erned by the (Weber–Fechner) logarithm of the amplitude,
whereas the “subtraction” is that of excitation minus inhibi-
tion (E/I) and need not be taken literally as it is simply used
here as a criterion. We refer to this subtraction as the internal
level difference (iLD) and contrast it with the interaural level
difference (ILD), i.e., the logarithmic amplitude difference
between the external sound inputs to both ears.

It is also known that certain neurons are sensitive to
time differences between eardrum vibrations (Schnupp and
Carr 2009; Christensen-Dalsgaard et al. 2011; Christensen-
Dalsgaard and Carr 2009). We refer to this metric as the
internal time difference (iTD), in contrast to the interaural
time difference (ITD) as measured by an external observer.
The internal time and level differences are the unique out-
come of the interaction between the outside signal and the
internal coupling arising from the air-filled interaural cavity
as shown in see Fig. 2.

The model (Vedurmudi et al. 2016) explained here explic-
itly demonstrates how iTDs and iLDs emerge solely due
to the internal acoustic coupling between the eardrums in
conjunction with external left and right stimulus. We do so
through a minimal model of circular membranes coupled
through a cylindrical air-filled cavity. The model will be
“minimal” in the sense that the number of its ingredients is as
small as possible and its structure is as simple as possible, but
not simpler. Furthermore, and due to its simplicity, we will
see that that the present ICE Model is universal in the sense
that with an appropriate change in parameters, it is applica-
ble to all species with internally coupled ears. Finally, the
ultimate goal of the present review is proving that the inter-
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Fig. 2 Interaural cavity connecting left and right tympanum (TM) in
a frogs, b lizards, and c birds. The bird in c is seen from the top, the
other two show a cross section, and all three exhibit the interaural cavity
as a gray tube. In a, b it is part of the pharyngeal cavity (pharynx), in
c it is a separate tube through the skull. Little bones (extracolumellae)
embedded in the eardrums transfer their vibrations to left and right
cochlea. In all three cases, the eardrum (TM) separates the pharyngeal
or interaural cavity from the external world. Figure from (Christensen-
Dalsgaard 2005), redrawn

play of the geometry and the biophysics of the two tympana,
and the cavity connecting them—cf. Fig. 3b—, suffices to
qualitatively understand the main properties of ICE.

2 Mathematical ICE model

Our aims are to devise a mathematical model for azimuthal
sound localization and, thereafter, to compare it with exper-
imental data. To do so, we must first model the anatomy of
animals with ICE. The ICE system and, hence, our model,
has three primary components,

– the sound source and the animal’s head which gives us a
mathematical expression for the stimulus at the eardrums.

– the eardrum itself, which both receive the external stim-
uli and separate the outside auditory world from the
inside pharyngeal cavity connecting the two eardrums.
And finally,

– the interaural or pharyngeal cavity, which, with the
Eustachian tube, is responsible for the coupling that leads
to the modification and often enhancement of the hearing
cues.

Once the above biophysical systems have been described,
we can proceed with a mathematical analysis of the different
components in order to derive explicit expressions for the
hearing cues. Though the ICE theory to be explained is uni-
versal and far more general, we will focus on lizards for the
sake of definiteness.

2.1 Internal cavity

We model the internal cavity as an air-filled cylinder of
length L , commonly termed the interaural distance, obtained
through direct measurement. Similarly, the cavity volume
Vcav can be measured directly and can be used to calculate
the cylinder radius through the relation

Fig. 3 The bold arrows represent the direction conventions along the
cylinder’s axis. The present model b is represented by a cylinder of
radius acyl and length L closed at both ends by sectorial membranes
of radius atymp. The darkly shaded v-shaped region corresponds to the
extracolumella; see Sect. 2.2.1. The membranes are driven both by an
external sound pressure as well as by the internal pressure inside the
cavity (lightly shaded region). The membrane motion in turn moves
the extracolumella like a second-order lever, i.e., the load is situated
between the effort and the fulcrum. Finally, the extracolumella trans-
duces the membrane vibration via the columella to the cochlea; cf.
Fig. 5. a Internal cavity—previous model (Vossen et al. 2010) without
volume correction. b Internal cavity—current model (Vedurmudi et al.
2016) allowing volume correction with atymp < acyl

acyl =
√
Vcav
πL

(1)

The three-dimensional model for the internal cavity is illus-
trated in Fig. 3b. The smaller circles at either end of the
cylinder correspond to the eardrums. Simply put, the model
consists of a cylindrical tube of radius acyl and length L
with circular holes on either side with the radius of the tym-
panic membrane, atymp ≤ acyl. These holes are in turn closed
by rigidly clamped elastic membranes, the tympana (darkly
shaded circular surfaces in Fig. 3b), which will be described
in the next section.

In an earlier mathematical treatment of ICE (Vossen
(2010); Vossen et al. (2010)), the oral cavity was modeled
as a simple cylinder closed at both ends by rigidly clamped
(baffled) circular eardrums. In the aforementionedmodel (cf.
Fig. 3a), the cylinder length is the interaural distance L , and
the radius of the cylinder was taken to be equal to that of
the eardrum, i.e., acyl = atymp, which resulted in a cavity
volume about an order of magnitude smaller than what is
observed in nature. This air-filled cavity is not the mouth or
oral cavity but the pharyngeal cavity, which is often appre-
ciably smaller. In general, we will see that a smaller volume
results in a stronger interaural coupling. By treating the cav-
ity volume as a variable parameter, we can directly analyze
its effect on the internal coupling between the two eardrums,
and the effect this has on the iTD and iLD. In doing sowewill
meet several new and surprising phenomena, and the great
reward of a universal theory is that it provides general insight.

The exact nature of the internal coupling will be discussed
in the next sectionwherewe performa thorough evaluation of
the complete system. The geometric representations of ICE
are shown in Fig. 3a, b. We will be working in a cylindrical
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coordinate system with x ∈ (0, L) being the direction along
the cylindrical axis and (r, φ) the polar coordinates in the
plane perpendicular to it.

2.2 Middle ear system

The main components of the middle ear of lizards are the
eardrum, the columella, and the extracolumella. The tympa-
num, or eardrum, is a thin membrane that separates the outer
ear and the middle ear, and vibrates in response to exter-
nal sound waves. The space on the deep (inner) side of the
tympanum is the middle ear cavity; this cavity is linked, by
the Eustachian tube, to the larger midline pharyngeal cav-
ity. Unlike humans, lizards possess only a single middle ear
bone, the columella, that is connected (typically asymmetri-
cally) to the eardrum by means of a cartilaginous element,
the extracolumella. The placement of the extracolumella can
be seen on the left in Fig. 4a.

The membrane-extracolumella-columella system func-
tions as a second-order lever where the internal and external
pressures drive the membrane, which in turn causes a dis-
placement of the extracolumella. This motion is transferred
via the columella to the inner ear (the perilymphatic fluid
of the cochlea). The cochlear hair cells transduce this fluid
motion into electrochemical impulses, which will be passed
on to the brain via the auditory nerve; cf. Fig. 4b.

For frequencies that are not too high (say, below 4kHz),
the extracolumella can be taken to move as a completely

(a) (b)

Fig. 4 Left close-up shot of a T. gecko illustrating the scale and shape
of the tympanum and the extracolumella (red box). The extracolumella,
which is embedded into the tympanic membrane, picks up the mem-
brane vibrations and transmits them through the columella—see also
Fig. 5—to the cochlea. Courtesy of Prof. Zhendong Dai (NUAA). Right
cross section of a lizard’s head. The tympanic membranes (TM) as well
as the air inside the middle ear cavity (MEC) and eustachian tubes (ET)
are excited by incoming sound waves. Because of the large width of
the eustachian tubes (ET), the air inside the pharynx (P) is also excited.
The tympanic vibration drives the columella (C) in such a way that its
lever construction transmits the vibrations to the oval window (OW),
the membrane at the entrance to the cochlea. The OW vibration excites
the cochlear fluid, giving rise to a frequency-dependent activation of
the underlying auditory nerve fibers. The round window (RW) is a
membrane that serves to compensate the pressure within the fluid. Fig-
ure taken from (Christensen-Dalsgaard and Manley 2005). a Gecko
eardrum, b head cross section (color figure online)

Fig. 5 Operation of the middle ear lever in Geckos reproduced from
Manley (1972b). The inferior process of the extracolumella (AC) hinges
at point C. At low frequencies, the extracolumella is a stiff bar, but at
higher frequencies, the inferior process of the extracolumella begins to
flex as shown in the inset. The columellar footplate (B) is a piston that
fits into the oval window of the cochlea

stiff bar. Manley (1972b) has shown that the extracolumella
begins to flex at higher frequencies, which is illustrated in
Fig. 5. This flexion reduces the columellar transfer effi-
ciency and is partly responsible for the poor high-frequency
response of gecko middle ears, a feature also observed in
other non-mammalian vertebrates. In our current treatment,
however, we assume that the extracolumella behaves as a
rigid plate as our frequencies of interest to auditory processs-
ing are <4kHz.

2.2.1 Tympanic membrane

The extracolumella applies a significant mechanical load to
the tympanum (Manley 1972a) precluding its treatment as
a freely vibrating membrane. Furthermore, the asymmetric
contact of the extracolumella has important physical conse-
quences, especially in the observed vibration patterns of the
membrane.

In a previous treatment (Vossen et al. 2010) of ICE,
the tympanum was modeled as a clamped circular mem-
brane with asymmetrically attached sectorial load between
−β < φ < β. This manifests itself as an additional bound-
ary condition at φ = β and φ = −β which has to be satisfied
via a numerical approximation of keeping the extracolumella
straight. In other words, the membrane would be constrained
to vibratewith a profile thatwould best approximate a straight
line at the extracolumella boundary. While this method has
the advantage of being able to quite accurately reproduce the
complex vibration patterns of the eardrum, it does not lend
itself well to an analytical treatment of the coupled system.
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In our recent model (Vedurmudi et al. 2016), we took
a slightly different path. The tympanic membrane will be
modeled as a rigidly clamped sectorial membrane with its
vibrating part limited to β < φ < 2π − β. This means
that in addition to the radial boundary at atymp, we have a
new set of boundaries at φ = β and φ = 2π − β = −β

where themembranevibration is set to zero.This is illustrated
in 6. The membrane material will be assumed to be linear-
elastic. As before, the equations describing the vibrations of
the membrane will consequently be linear 2nd-order partial
differential equations (PDE’s) to be derived in Sect. 3.2.

In doing so, the extracolumella is effectively of infinite
mass and motionless, a reasonable approximation since the
extracolumella and attached proximal elements are typically
much heavier than the rest of the membrane. Typically, the
mass of an isolated “clean” tympanum is of the order of 1mg.
The mass of the extracolumella, columella, and intimately
linked ligaments is about 10× more, and the endolymph
directly linked to the columella is 500mg. Hence, the ratio
of tympanic mass to the coupled mass behind it is <1/300.

2.3 Head model and sound input

In realistic environments, the acoustic fields experienced by
animals are often very complex. In addition to sound waves
radiated directly from one or more sources, they also involve
waves reflected from objects in their immediate neighbor-
hood. Most mammals possess the neuronal power required
to carry out the sophisticated signal processing needed to
derive useful information from these signals, whereas ani-
mals like geckos respond to simpler cues—usually, the direct
field from the nearest or strongest source.

We will therefore model our incoming input as a simple
planewave (or equivalently, a pure tone) of a given frequency.
This is not a restriction since the ensuing mathematical
description may be taken as linear. The input is specified
in terms of its intensity, frequency, and direction. Such a
stimulus can be generated experimentally, for instance in an
anechoic chamber using loudspeakers that are placed at a dis-
tance from the animal that is large compared to the animal’s
size and the wavelength of the sound involved (Christensen-
Dalsgaard and Manley 2005, 2008; Christensen-Dalsgaard
et al. 2011). In other experiments, a similar stimulus has also
been provided by means of a headphone sealed to the ear
(Koeppl and Carr 2008).

The amplitude of the soundpressure on the outer surface of
the eardrumcanbe taken as uniform.The spatial variation can
be safely neglected as the typical eardrum is less than 5mm
in diameter, whereas the smallest sound wavelengths in the
hearing range of the larger Varanus is ∼170mm (2kHz) and
is around ∼85mm (4000Hz) for the smaller Tokay gecko. In
other experiments, a similar stimulus has also been provided

Fig. 6 Left sketch of the eardrum of a T. gecko, taken from Manley
(Manley 1972a). “COL” is the approximate position of the columella
on the extracolumellar footplate. Dimensions in millimeters. Right the
tympanic membrane in ICE. The lightly shaded region is modeled as a
linear-elastic membrane, whereas the darkly shaded region (β < φ <

2π − β) represents the extracolumella, which together with the masses
behind it is taken to be infinitely heavy; see main text. The angle β

corresponds to the breadth of the extracolumella and is estimated from
anatomical data. a Gecko eardrum, b ICE eardrum

by means of a headphone sealed to the ear (Koeppl and Carr
2008).

In general, as a result of the diffraction of sound around
the head and body of an animal, there would be a difference
in phase as well as amplitude between the sound at the two
ears. The exact variation depends on the size of the animal
and the frequency of the incident wave. However, because
of the small interaural lengths (relative to the stimulus wave-
length) ofmany animalswith ICE, certainly lizards and frogs,
the amplitude difference is negligible (Michelsen and Larsen
2008). The phase difference, although small compared to
those in larger animals due to the absence of any significant
diffraction, is not negligible. Accordingly, the inputs at both
ears have the same amplitude p and a small frequency and
direction-dependent phase difference�. As wewill later see,
through ICE, even animals with small interaural distance L
can obtain useful internal time and level differences (Fig. 6).
The sound inputs to both ears are given by

p0 = peiωteik�/2 pL = peiωte−ik�/2 (2)

� = L sin θ. (3)

We have also chosen a coordinate system relative to the
median-sagittal plane or the head midline of the animal such
that θ gives the angle of incidence of the sound wave rela-
tive to this plane. For more complex auditory systems, we
would require two angles (θ, φ) but this is not needed for
our analysis. According our convention, θ = 0◦ corresponds
to sources directly in front of the animal and θ = ±180◦ to
those directly behind. The ear closer to the sound source is
said to be ipsilateral, while the one further away from the
source is called the contralateral ear. The terms ipsi- and
contralateral also refer to the stimuli at the respective ears;
cf. Fig. 7.

123



364 Biol Cybern (2016) 110:359–382

Fig. 7 Acoustic head model for ICE. Depending on the angle of the
sound source θ , the distance between the sound source and the con-
tralateral (C) ear is longer than its distance from the ipsilateral (I) ear.
The extra distance travelled by the sound wave to reach the contralat-
eral ear is L sin θ which gives rise to a phase difference � = kL sin θ .
The small head size of many of these animals lets us safely (Michelsen
and Larsen 2008) neglect diffraction effects on the phase and ampli-
tude difference, which would have required us to account for the fact
that the sound wave would have to travel around the head to reach the
contralateral ear

Given a source direction θ , � = L sin θ is the additional
distance traveled by the soundwave to reach the contralateral
ear (see Fig. 7). We note that in defining the input in this way,
we have also emphasized the symmetry of the system.

3 Derivation of the mathematical model

In this section, we will use the physical model for internally
coupled ears to derive an expression for the vibrations of the
eardrum in terms of the sound input. Our goal is to accurately
represent the functions and do so in such a way that the fre-
quency and direction dependence as well as the effects of
coupling are apparent. While deriving the main functions of
interest,wewill alsofind an expression for the cavity pressure
distribution and discuss the appropriate boundary conditions
and approximations that relate the membrane vibrations to
the internal pressure. In Table 1, the main functions used
in the derivation below have been listed, together with their
physical interpretation.

In order to motivate the derivation below, we start by
briefly discussing the final expression that relates the mem-
brane vibrations to the sound inputs. This also serves to
clearly see the interplay between the terms corresponding
to the membrane and to the internal cavity. Given a pair of
internally coupled tympana of area Stymp = (π − β)a2tymp
driven by the sound pressures given in (2), the displacement
of its surface at a position (r, φ) is given by

u0/L(r, φ;ω, t) = 1

2

(
pL + p0

1 + �tot	+
∓ pL − p0

1 + �tot	−

)
�, (4)

Table 1 Functions and variables used in the ICE model

θ , ω, k Sound source direction, angular
frequency and wavenumber
(k = ω/c) with sound speed
c = 343ms−1

p0/L , � Sound pressure inputs to the two ears
given the direction and the phase
difference between them

L , acyl, Vcav Interaural separation (or cylinder
length), cylinder radius, cavity
volume

Jq, μqs, νqs Order q Bessel function of the first
kind, its sth zero and sth extremum,
respectively

pqs(x, r, φ), ζqs Cavity pressure modes and
corresponding axial wavenumbers

p(x, r, φ; t), vx (x, r, φ; t) Cavity pressure distribution and air
velocity

umn(r, φ; t), ωmn Tympanic membrane eigenmodes and
corresponding eigenfrequencies

u0/L (r, φ; t), uave0/L (t) Membrane displacement—full and
average

�(ω) Membrane frequency response

ρM , dM , atymp Membrane density, thickness and
radius

β < φ < 2π − β Extent of the vibrating part of the
membrane. The remaining sector
corresponds to the extracolumella

f0, α Membrane fundamental frequency and
damping coefficient

where

� =
∞∑
m,n

umn(r, φ)
∫
dS umn

ρMdM�mn
∫
dS u2mn

, (5)

�tot(ω) =
∫
Smem

dS �(r, φ, ω) , (6)

	+ = − ρc2

Vcav
kL cot kL/2, 	− = ρc2

Vcav
kL tan kL/2. (7)

Here �mn = ω2 −ω2
mn −2iαωmn and the integrals are taken

over the vibrating part membrane surface,

Smem = (r, φ) ∈ (
0, atymp

) × (β, 2π − β) .

The membrane eigenmodes, denoted by umn, can be explic-
itly written down as

umn(r, φ) = sin κ(φ − β)Jκ (μmnr), (8)

where κ[m] = mπ
2(π−β)

,m = 1, 2, 3, . . . and Jκ is the order-κ
Bessel function of the first kind with μmn × atymp being its
nth zero. The remaining quantities are defined in Table 1.
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For a solitary driving pressure peiωt on an individual
membrane’s surface, �(r, φ) = u(r, φ)/p is its frequency
response and �tot is the integral of � over the vibrating
part of the membrane surface Smem. The frequency depen-
dence of both these terms is contained in �mn which will be
defined later; cf. (47). In (7),	± corresponds to the frequency
response of the internal cavity. Readers who want to skip the
mathematical details, can continue with the next section.

3.1 Cavity pressure

At our frequencies of interest (<4kHz), viscous acoustic
damping in air can be neglected so that we follow common
acoustic models (Rschevkin 1963; Temkin 1981; Fletcher
1992) and describe the air inside the cavity by linear acoustics
in a cylindrical coordinate system. In this approach, air
moves due to a local pressure p(x, r, φ; t) obeying the three-
dimensional wave equation

1

c2
∂2 p(x, r, φ; t)

∂t2
= �(2) p(x, r, φ; t) + ∂2 p(x, r, φ; t)

∂x2
(9)

where

�(2) = 1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2
∂2

∂φ2 (10)

is the two-dimensional Laplacian in polar coordinates and c is
speed of sound. The complete solutionmust take into account
the boundary conditions at andwithin the cavitywalls and the
ones at the air–membrane interface. We also note that Eq. (9)
presumes through its boundary conditions that the animal’s
mouth is closed, which is typical for a waiting predator or
prey.

In order to solve (9) for a particular frequency f with
angular frequencyω = 2π f , we use the following separation
ansatz1

p(x, r, φ, t) = f (x)g(r)h(φ) exp(iωt) (11)

which after substitution into (9) leads to,

k2 f (x)g(r)h(φ) + f (x)h(φ)

[
∂2g(r)

∂r2
+ 1

r

∂g(r)

∂r

]

+ f (x)g(r)
1

r2
∂2h(φ)

∂φ2 + g(r)h(φ)
∂2 f (x)

∂x2
= 0.

(12)

1 Before proceedingwe should note that in general, the time component
of the pressure also has a temporally backward-moving component, i.e.,
exp(−iωt). By making the ansatz in (11), we have implicitly used the
fact that the form of the input as given in (2) constrains the pressure
to only having a forward-moving component, i.e., exp(iωt). As for the
separation ansatz, the reader may well consult Asmar (2005, p. 187).

As always, k := ω/c is the wavelength of the sound wave
at the given angular frequency (ω = 2π f ). The substitu-
tion exp(iωt) in (11) actually means that we are looking
for the (countable) eigenvalues of −� inside the cavity, in
terms ofω2 with appropriate boundary conditions; see below.
Although this might look mathematically contradictory at
first, we will soon see that it is not. Making the ansatz of sep-
aration of variables and dividing (12) by f (x)g(r)h(φ) gives
the following set of separated ordinary differential equations
(ODEs),

d2 f (x)

dx2
+ ζ 2 f (x) = 0 (13)

d2h(φ)

dφ2 + q2h(φ) = 0 (14)

∂2g(r)

∂r2
+ 1

r

∂g(r)

∂r
+

⎡
⎢⎢⎣

⎛
⎜⎜⎝k2 − ζ 2︸ ︷︷ ︸

=:ν2q

⎞
⎟⎟⎠ − q2

r2

⎤
⎥⎥⎦ g(r) = 0 (15)

with separation constants q and ζ . The first two equations
are second-order ODEs that can be readily solved to give,

f (x) = exp (±iζ x) (16)

h(φ) = exp (±iqφ) . (17)

The thirdEq. (15) is known as theBessel differential equation
(Copson 1973, p. 313) and its general solution is given by

g(r) = Cq Jq
(
νqr

) + DqYq
(
νqr

)
. (18)

Jq and Yq are the order-q Bessel functions of the first and
second kind, respectively.We can set the coefficients Dq = 0
as the Bessel function of the second kind diverges at r = 0
(Copson 1973), and we are seeking solutions that remain
finite on the membrane surface.

With the above solutions for f (x), g(r), and h(φ), we can
write down a specific solution to (9),

pq(x, r, φ)=(
Aq exp(iζqx)+Bq exp(−iζqx)

)
p◦
q(r, φ) (19)

p◦
q(r, φ) = Jq(νqr/acyl)

(
Cq cos qφ + Dq sin qφ

)
. (20)

The coefficients A, B, q, ζ , and ν will be subsequently
determined by the boundary conditions. Through p◦

q, we
denote the components of the eigenfunction in the radial and
azimuthal directions.

3.1.1 Pressure boundary conditions

In order to determine the coefficients in (20), we have to
satisfy three sets of boundary conditions,
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• Continuity and smoothness in φ or equivalently

h(0) = h(2π) and dh
dφ

∣∣∣
φ=0

= dh
dφ

∣∣∣
φ=2π• Vanishing of the normal derivative at the cavity walls—

dg
dr

∣∣∣
r=acyl

= 0.

• Equating the membrane velocity to the air velocity at the
inner air–membrane interface.

The first set of requirements is trivial and constrains q to
take integer values. The second and third are a result of
the so-called “no-penetration” boundary condition of fluid
mechanics. They arise from the fact that the cavity wall is an
impermeable boundary. This translates into the requirement
that the normal velocity function should vanish (Pozrikidis
2009, p. 111). The velocity function (v) is related to the pres-
sure by

−ρ
∂v
∂t

= ∇ p. (21)

where ρ is the density of air. This result emerges directly
from the linearization of the Euler equation

∂ ṽ
∂t

+ ṽ.∇ṽ = − 1

ρ
∇P + f . (22)

Assuming that the acoustic pressure can be described as a
fluctuation p around a stationary background (atmospheric)
pressure P0 and that the fluid velocity v, as small fluctuations
in a quiescent fluid v0 = 0, we obtain

ṽ = v0 + v = v

P = P0 + p.

Neglecting the body forces due to gravity (f) gives us

⇒ ∂v
∂t

+ (v · ∇)v = − 1

ρ
∇ p. (23)

We can neglect the convection term (v ·∇v) as it is of second
order in the extremely small v, and thus arrive at (21).

At the cylindrical cavity wall, the normal velocity is in
the radial direction and vanishes. Substituting the expression
(25) for the pressure into (21) leads to a Neumann boundary
condition for the pressure,

vr = − 1

iρω

∂p(x, r, φ; t)
∂r

∣∣∣∣
r=acyl

= 0

⇒ ∂ Jq(νqr)

∂r

∣∣∣∣
r=acyl

= 0 (24)

This constrains νq to a discrete set of valueswhich correspond
to the localminima andmaximaof Jq.We therefore introduce
an additional index s which takes integer values such that

νqs × acyl corresponds to the sth extremum of the order-q
Bessel function of the first kind. This results in (19) becoming
a set of modes indexed by (q, s):

pqs(x, r, φ)=(
Aqs exp(iζqsx) + Bqs exp(−iζqsx)

)
p◦
qs (25)

p◦
qs(r, φ) = Jqs(νqsr/acyl)

(
Cqs cos qφ + Dqs sin qφ

)
. (26)

Effectively, the modes are three-dimensional waves prop-
agating with wave numbers ζqs in the x-direction and νqs in
the radial direction. The first of these modes (corresponding
to q = 0, s = 0) is of particular importance. Since the first
maximum of J0 occurs at r = 0, we have ν00 = 0. This leads
to the first mode being a plane wave that is constant in r and
φ and only propagates along the axis of the cylinder.

The modes defined through (19) and (24) form a discrete
orthogonal basis inside the cylinder. This means that

∫
�

dV pq1s1 pq2s2 = 0, if q1 
= q2 or s1 
= s2 (27)

where the integral is over the volume of the cylinder. This is a
consequenceof the fact that for differentq’s the trigonometric
parts of the modes are orthogonal, whereas for the same q
the Bessel parts are orthogonal for different s’s. Expressed
mathematically, this requirement gives us

∫
dS fq1s1 fq2s2 = 0, q1 
= q2 or s1 
= s2 (28)

where dS = rdrdφ with the integral being taken over the
disk of radiusacyl.We can thereforewrite the general solution
to (9) as a linear combination of the orthogonal modes given
in (25):

p(x, r, φ; t) =
∞∑
q=0

∞∑
s=0

pqs(x, r, φ)eiωt (29)

where the individual modes pqs are defined in (19).
The third and final set of boundary conditions at the inter-

nal air–membrane interface at either end of the cylinder will
be used to determine the remaining coefficients, Aqs and Bqs.
To do so, we first need to find an analytical expression for
the membrane vibrations.

3.2 Tympanic vibrations

The eardrum is modeled as a damped linear-elastic mem-
brane obeying

−∂2u

∂t2
− 2α

∂u

∂t
+ c2M�(2)u = 1

ρMdM
�(r, φ; t) (30)
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with displacement u(r, φ; t), damping coefficient α, density
ρM , thickness dM , and wave-propagation velocity

cM = √
T0/ρM (31)

(cf. Table 1) where T0 is themembrane tension. Furthermore,
�(r, φ; t) is the total pressure driving themembrane (on both
the inner and the outer surface). The tympanic membrane is
fixed at its radial boundary r = atymp and, as a consequence
of the presence of the extracolumella, at φ = ±β.

As a preliminary exercise, we first derive expressions for
the free and force-driven vibrations of a circular membrane.
We will then use our results to move on to the sectorial mem-
brane which corresponds to the tympanum loaded by the
extracolumella.

3.2.1 Circular membrane

We consider a rigidly clamped circular membrane of radius
atymp and solve for the membrane displacement u(r, φ) at a
point (r, φ) with r < atymp and 0 ≤ φ < 2π . Due to the
absence of the extracolumella, the membrane is only subject
to the Dirichlet boundary condition u(r, φ; t)|r=atymp = 0.

We first determine the eigenmodes of an undamped circu-
lar membrane by solving (30) for α = 0, � = 0. We solve
the resulting two-dimensional Helmholtz equation by using
a separation ansatz, similar to the one used in (11),

u(r, φ; t) = f (r)g(φ)T (t). (32)

This gives us the following set of equations

d2g(φ)

dφ2 + m2g(φ) = 0 (33)

d2T (t)

dt2
+ c2Mμ2T (t) = 0 (34)

∂2 f (r)

∂r2
+ 1

r

∂ f (r)

∂r
+

[
μ2 − m2

r2

]
f (r) = 0 (35)

with separation constants μ and m. The above equations are
identical to those in (13)–(15). The solution to (35) is, as
before, Jm(μr), the order-m Bessel function of the first kind
(Copson 1973). The boundary condition in the φ direction
remains the same resulting in

ucircmn (r, φ; t) =
(
Emne

iωmnt + Fmne
−iωmnt

)
ucircmn (r, φ) (36)

ucircmn (r, φ) = [Mmn cosmφ + Nmn sinmφ] Jm(μmnr). (37)

In contrast to the boundary condition for the pressure in the
internal cavity (24), we require u to vanish at the boundary.
In other words, we impose a Dirichlet boundary condition
which effectively requires Jm(μatymp) = 0. This constrains

Fig. 8 Eigenmodes of a full circular membrane with the characteristic
numbers of the modes shown above each figure. Displacements into
the surface of the paper are darkly shaded, while those out are lightly
shaded (illustrated in the legend). The eigenfrequency increases from
left to right and top to bottom. This kind of a vibration profile does not
agree well with that for lizards due to the asymmetry brought about
by the embedded extracolumella (see next subsection), but does agree
fairlywell for frogs since their extracolumella is attached symmetrically
to the middle of the tympanum (Jørgensen 1993); see also Fig. 9

μ to a discrete set of values which correspond to the zero of
Jm . In (37), the combination of atymp andμmn corresponds to
the nth zero of Jm and ωmn = cMμmn is the eigenfrequency
of the (m, n) eigenmode.

In general, m can take any positive real value—a fact that
will help us solve the sectorial membrane problem. In the
case of a full circular membrane, however, as in the case
of the pressure inside a cylindrical cavity, requirements of
continuity and smoothness in φ result in m taking inte-
ger values only. Moreover, the eigenmodes also form an
orthogonal set. For later convenience, we denote the spa-
tial part of the above mode by ucircmn (r, φ). The first few of
these modes have been plotted in Fig. 8. We also note that
a freely vibrating membrane can have time-dependent com-
ponents that are both forward- and backward-moving. The
presence of a driving force, however, will result in familiar
expressions.

3.2.2 Sectorial membrane

In Sect. 2.2.1, we noted that in vertebrates there is a trans-
ducer for the membrane’s vibrations in the form of an
asymmetrically attached extracolumella. Consequently, the
membrane cannot be modeled as a full circular disk, but
rather as a sector of a given angle. For such a membrane, the
equation of motion of the vibrating part remains unchanged.
However, because of its odd shape, we now have a new
set of temporally fixed boundary conditions at φ = β and
{φ = 2π − β = −β, 0 ≤ reatymp}, in addition to the one at
r = atymp. In order to calculate the eigenmodes, we proceed
from the definition in (37) and determine the values thatm is
constrained to take based on the boundary conditions at all
three edges of the extracolumella.
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Fig. 9 The extracolumella touches the circular eardrum of frogs in the
middle, hence not breaking its rotational symmetry. The above plots
show unpublished experimental results of Jørgensen (1993) on excita-
tion patterns of the tympanum for different frequencies, as indicated.
They all look rotationally invariant. The fixed, circular, border has been
indicated once by a solid (red) circle for 600Hz. The dominant mode
for 600Hz is the fundamental one (0,1), higher modes mix in as the
frequency increases, corresponding nicely to the Bessel function of the
mode (0, 2); cf. Fig. 8. Plot courtesy of Jørgensen (color figure online)

We also note that because of the relatively largemass of the
extracolumella aswell as its attached elements in comparison
to the membrane, we can effectively model it as an infinitely
heavy sectorial plate. As a result we require that the mem-
brane displacement goes to zero at φ = β and φ = 2π − β

so that the φ part of (37) takes the form sin κ(φ − β). We
therefore obtain the following set of orthogonal eigenmodes,

umn(r, φ; t) =
[
Mmne

iωmnt + Nmne
−iωmnt

]
umn(r, φ) (38)

umn(r, φ) = sin κ(φ − β)Jκ(μmnr) (39)

where κ[m] = .5mπ/(π − β), m = 1, 2, 3, . . .. We see that
the radial—r—part of the above mode is given by the order-
κ Bessel function of the first kind with μmn × atymp being
its nth zero. The solution for the damped membrane follows
in a similar way.

It is apparent from the form of the above modes that
unlike in the case of the circular membrane eigenmodes,
these modes are no longer symmetric. The sectorial shape of
themembrane has important physical consequences and cap-
tures the complex vibration patterns of a realistic membrane.
For a circular membrane driven by a uniform pressure, the
asymmetric modes (with m 
= 0) are suppressed. This holds
in the case of frogs (Jørgensen and Kanneworff 1998), where
the extracolumella is attached to the middle of the tympanic
membrane and its rotational symmetry is not broken; see also
Fig. 9.

On the other hand, for the sectorial membrane as in the
case of lizards, the radial symmetry is broken explicitly by
the extracolumella. The first few of these modes are shown in
Fig. 10. The vibrations of a sectorial membrane are discussed
in more detail in Fletcher (1992, p. 87).

Fig. 10 Eigenmodes of a sectorialmembranewhere the omitted region
corresponds to the extracolumella with β = π/25; cf. Fig. 6b. The
eigennumbers are shown above each figure. As in Fig. 8, displacements
into the surface of the paper are darkly shaded while those out are
lightly shaded. The eigenfrequency increases from left to right and top
to bottom

3.2.3 Undamped and damped vibrations

For a damped membrane with α > 0 in Eq. (30), the spatial
part of the above eigenmodes remains unchanged. The form
of the time-dependent part T (t) as given by (32) is obtained
from the solution to the following ordinary differential equa-
tion,

d2hmn(t)

dt2
− 2α

dhmn(t)

dt
− ω2

mnhmn(t) = 0. (40)

The above expression differs from the equation for the time-
varying part of the pressure (34) only in a first-order damping
term. We therefore expect (40) to have exponentially decay-
ing solutions in time and look for them.

As an ansatz, we assume hmn to take the form exp(iω̃mn)

where ω̃mn can, in general, be a complex number. This leads
to a quadratic equation in ω̃mn with solutions

ω̃2
mn − 2iαω̃mn − ω2

mn = 0 (41)

ω̃mn = iα ± ω∗
mn (42)

where

ω∗
mn =

√
α2 + ω2

mn. (43)

We see that the new, now damped, eigenmodes possess both
an exponential damping term as well as a shift in the original
eigenfrequencies. We require the membrane displacement
to remain finite as t → ∞. As exp(−iω̃mn) terms lead to
vibration amplitudes that increase exponentially as exp(αt)
we can safely drop them. This then leads to

ũmn(r, φ; t) = umn(r, φ)
[
Mmne

iω∗
mnt + Nmne

−iω∗
mnt

]
e−αt .

(44)

123



Biol Cybern (2016) 110:359–382 369

The effect of membrane damping is therefore not only an
exponentially decreasing damping term, but also a shift in the
eigenfrequencies of all the membrane eigenmodes. The gen-
eral solution is given by a linear combination of umn with the
coefficients that are determined by initial conditions. These
could be, for instance, membrane displacement and velocity
at t = 0.

3.2.4 Forced vibrations

For a periodically driven membrane, there are two compo-
nents of the full solution corresponding to forced vibrations.
The first of these is the quasi-stationary-state solution which
oscillates with the same frequency as the input and does not
depend on the initial conditions—uss. The second of these is
the transient solution that depends on the initial conditions
but not directly on the driving pressure—ut .

The quasi-steady-state solution is expressed as a linear
combination of the spatial part of the membrane eigenmodes
defined in (39) with a time component equal to that of the
driving pressure, exp(iωt),

uss(r, φ; t) =
∞∑

m=0

∞∑
n=1

Cmnumn(r, φ)eiωt . (45)

By substituting (45) into (30) with � = peiωt we obtain

∞∑
m=0

∞∑
n=1

ρMdM�mnCmnumn(r, φ)eiωt = peiωt (46)

�mn =
[(

ω2 − ω2
mn

)
− 2iαω

]
. (47)

Using the orthogonality of the eigenmodes, we can calculate
the coefficients Cmn,

Cmn = p
∫
dSumn

ρMdM�mn
∫
dS (umn)

2 (48)

with the integral this time being taken over the circular disk
of radius atymp (or equivalently, over the vibrating surface of
the tympanum).

The transient solution is found by solving the membrane
equation for�(r, φ; t) = 0 which, effectively, is the solution
of the free damped membrane, i.e., a linear combination of
the eigenmodes given in (44),

ut (r, φ; t) =
∞∑

m=0

∞∑
n=1

ũmn(r, φ; t). (49)

The complete solution is given by u = ut+uss and the coeffi-
cients Mmn and Nmn are determined by the initial conditions
(at t = 0).

Quasi-steady-state approximation: the damping coeffi-
cient α is usually given in terms of the membrane fundamen-
tal frequency ( f0) and a quality factor Q as α = 2π f0/2Q.
The eardrums in the animals we are concerned with are gen-
erally underdamped, i.e., Q > .5, which results in damping
coefficients that are around ∼2600 s−1 for the Gecko lizards
and around ∼400 s−1 for the larger Varanids. As a result of
the exponential decay of the transient vibration amplitude,
we can safely assume that within a few time-periods of the
input frequency, and even far less for theGeckos, the transient
vibrations of the forced membrane are gone. In our subse-
quent derivations, we can safely neglect the transient parts
of the membrane vibration. The latter will be treated in full
elsewhere (Heider et al. 2016).

3.3 Vibration of coupled membranes

We can nowmove on to the analysis of the vibration of inter-
nally coupled membranes and derive the expressions defined
in (4). The analysis in this section is similar to the treat-
ment of the vibration of a circular membrane backed by a
cylindrical air cavity closed at the opposite end as given by
(Rajalingham andBhat 1998). The quantities of interest there
were the eigenmodes of the circular membrane, but we are
primarily interested in the steady state vibration of sectorial
membranes that are internally coupled to each other as well
as to external stimuli at both ends.

It is convenient to first write down the main equations
of the system based on our previously derived expressions.
A general expression for the quasi-steady-state vibrations of
the eardrums is given by a linear combination of the sectorial
eigenmodes, (39),

u0/L(r, φ; t) =
∞∑

m=0

∞∑
n=1

C0/L
mn umn(r, φ)eiωt (50)

where 0 and L denote the x = 0 and x = L mem-
branes, respectively. Given the cavity pressure distribution
p(x, r, φ; t) as given by (29), the driving pressure on either
side of the membrane equals �0/L(r, φ; t) = p0/Leiωt −
p(0/L , r, φ; t). Substituting these expressions into (30) gives
us the following set of equations,

∞∑
m=0

∞∑
n=1

ρMdM�mnC
0/L
mn umn(r, φ)eiωt =�0/L(r, φ; t) (51)

The above equation is only valid on the vibrating part of
the membrane surface, i.e., for Smemb = {r < atymp and
β < φ < 2π − β}.

As discussed in Sect. 3.1.1, the internal cavity pressure
satisfies the no-penetration condition at solid boundaries.
This means that at both ends of the cylinder, we equate the
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velocity profile of air to the velocity profile of the circular
surface including the membrane; cf. Fig. 11a. As the mem-
brane diameter is smaller than the cylinder diameter, we will
have to set the air-particle velocity to zero for r > atymp.
Additionally, since the membrane displacement is only in
the x-direction, we need only calculate the x-component of
the velocity. Using the relation in (21) we get,

vqs(x, r, φ) = ζqs

(
Aqse

iζqsx − Bqse
−iζqsx

)
pqs(r, φ) (52)

vx (x, r, φ; t) = −1

ρω

∞∑
q=0

∞∑
s=0

vqs(x, r, φ)eiωt (53)

and the exact boundary conditions are given by

vx (0, r, φ; t) =
{−iu0, (r, φ) ∈ Smemb

0, otherwise
(54)

vx (L , r, φ; t) =
{
iu0, (r, φ) ∈ Smemb

0, otherwise
. (55)

where according to our convention,membrane displacements
outward from the cylinder are taken as positive (in x) and
those inward are taken as negative.

3.3.1 Approximate boundary condition

As we have just seen, the exact boundary conditions would
require us to set the air velocity to be exactly equal to
the membrane velocity. However, the membrane and cav-
ity modes are not orthogonal to each other. In other words,
each membrane mode couples with every cavity mode and
vice versa. Our way around this problem is to approximate
the boundary conditions (54) and (55). We do this by effec-
tively replacing eachmembrane by a circular piston operating
on the internal pressure p and moving with the membrane’s
average velocity u̇ave0/L so that

uave0/L = 1

πa2cyl

∫
dS u0/L , u̇ave0/L = iωuave0/L (56)

vx (0, r, φ; t) = −u̇ave0 , vx (L , r, φ; t) = u̇aveL (57)

where we have in fact taken the average velocity of the
entire cylindrical surface including the eardrum; cf. Fig. 11b.
Averaging over the tympana is what we call the piston
approximation. Its mathematical justification is somewhat
too involved for the present context and will be presented
elsewhere (Heider et al. 2016). Since the bare cylinder sur-
face is solid and nonmoving, the present approximation of
averaging over the lateral faces of the cylinder only differs
from the average over the membrane surface by a factor.

Physically, one can imagine air as “pretty” incompressible
so that in the long-wavelength domain we focus here a local

(a)

(b)

Fig. 11 Above exact membrane boundary conditions. The velocity of
air (vx ) equals that of the membrane (u0/L ). Below piston approxima-
tion. The membrane is approximated by a circular piston moving with
the membrane’s average velocity and with boundary conditions (57)
applied to (9) and (21). The piston approximation refers to (9) and the
boundary condition for the pressure p in the 3-dimensional cavity, not
to the motion (30) of the eardrum itself. In effect, it computes the net
volume change, a exact membranes, b piston approximation

boundary variation on one or both faces (corresponding to the
membrane displacement) has the same effect as the average
variation on the left and right face from where it propagates
through the cylinder representing the pharyngeal cavity. As
said in the caption of Fig. 11b, “In effect, it computes the net
volume change,” as confirmed mathematically (Heider et al.
2016)

�Vcav = πa2cyl
(
uaveL + uave0

)
.

Even in the absence of the extracolumella with full cir-
cular membranes on either end of the cylinder and despite
being in different dimensions (2 and 3), the cavity and mem-
brane modes have different boundary conditions. These are
Neumann for the cavity boundaries, incl. time-varying ones
if a sound stimulus is present at the tympana, and Dirichlet
for the membranes clamped at their borders.

Given themodifiedboundary conditions (57), it is straight-
forward to calculate the coefficients Aqs and Bqs in terms of
uave0/L . To do this, we use the orthogonality of the cavitymodes
(27) and the modal expansion (52), (53) of the air velocity.
By multiplying both sides of the boundary relations in (57)
by pqs(r, φ) and integrating over the circular surfaces at the
ends of the cylinder, this results in a system of two linear
equations for each pair of Aqs and Bqs,

Aqs − Bqs = −Lqsρω2uave0 (58)

Aqse
iζqsL − Bqse

−iζqsL = Lqsρω2SaveL (59)

where

Lqs =
∫
dSpqs(r, φ)

iζqs
∫
dSp2qs(r, φ)

. (60)

We must now make use of the fact that the cavity pressure
modes (25) integrate to 0 (i.e.,

∫
dSpqs = 0) unless q = 0
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and s = 0. For q = 0, this is a consequence of the Bessel
functions integrating to zero, while for q ≥ 1, this is due to
the more obvious fact that the integral of the trigonometric
part from 0 to 2π is zero. That is,

∫ aacyl

0
r Jq(νqsr)dr = 0, (61)

∫ 2π

0

(
Aqs cos qφ + Bqs sin qφ

)
dφ = 0. (62)

As a result we have Aqs = Bqs = 0 for all modes except
the (0, 0) mode. In other words, as a result of the piston
approximation, we only encounter plane wave modes inside
the cavity. We will subsequently omit the subscripts “00” for
these coefficients. From the above linear equations, they are
given in terms of the total membrane displacement as

A = − ρω2

2k sin kL

(
uave0 e−ikL + uaveL

)
, (63)

B = − ρω2

2k sin kL

(
uave0 eikL + uaveL

)
. (64)

We have also directly substituted ζ00 = k and simplified the
expression for L00 in the above expressions. These coeffi-
cients can now be substituted in place of the pressure into the
right-hand side of (51) so as to give

∞∑
m=0

∞∑
n=1

ρMdM�mnC
0/L
mn umn(r, φ)

= p0/L + ρω2

k

(
uave0/L cot kL + uave0/L csc kL

)
.

(65)

The time component exp(iωt) cancels on both sides of the
equation. We note that the right-hand side of the above equa-
tion system is independent of the spatial (r, φ) coordinates.

The above coupled system of equations can be consider-
ably simplified by taking their sum and difference to obtain
a new set of decoupled equations. After some algebra, we
have the following set of “sum and difference” equations,

∞∑
m=0

∞∑
n=1

ρMdM�mnC
+
mnumn(r, φ) = p+ + ρω2

k
uave+ cot

kL

2

(66)
∞∑

m=0

∞∑
n=1

ρMdM�mnC
−
mnumn(r, φ) = p− − ρω2

k
uave− tan

kL

2

(67)

where the “+” and “−” have been defined as the sum and
difference of the respective “0/L” components. That is,

C+
mn = CL

mn + C0
mn, p+ = pL + p0, (68)

C−
mn = CL

mn − C0
mn, p− = pL − p0, (69)

uave+ = uaveL + uave0 =
∞∑

m=0

∞∑
n=1

C+
mnumn(r, φ), (70)

uave− = uaveL − uave0 =
∞∑

m=0

∞∑
n=1

C−
mnumn(r, φ). (71)

Thus, it is apparent that the above system of equations is
decoupled because the uave± terms can be expressed as a
linear expansion of the respective C±

mn coefficients alone.
Analogously to the calculation of the coefficients for the
quasi-steady-state vibration in (46) and (48), we can now
use the orthogonality of the membrane modes umn to deter-
mine the coefficients of the sum and difference vibrations in
terms of the pressure and average membrane displacement,

C+
mn

∫
dS umn =

[
p+ + ρω2

k
uave+ cot

kL

2

]
Kmn

�mn
(72)

C−
mn

∫
dS umn =

[
p− − ρω2

k
uave− tan

kL

2

]
Kmn

�mn
(73)

where

Kmn =
(∫

dS umn
)2

ρMdM
∫
dS u2mn

. (74)

The integrals are over the vibrating part of the membrane
surface Smem. The substitution Kmn will simplify our cal-
culations in the appendix for the estimation of membrane
parameters. The next step will be to sum both sides of (72)
and (73) over all the membrane eigenmodes (m, n). The left-
hand sides of the equations give us

∞∑
m=0

∞∑
n=1

C±
mn

∫
dS umn = πa2cylu

ave± . (75)

Hence, we obtain exact expressions for the average mem-
brane displacements,

πa2cylu
ave± = pL ± p0

1 + �tot	±
. (76)

Wehave thus shownhow the quantities� and	± first defined
in (5), (6) and (7) emerge from our analysis. As stated earlier,
the 	± terms contain the effect of the coupling through the
air cavity and � is the frequency response of the membrane
to a pure tone of angular frequency ω. Qualitatively, we can
see that the information about the membrane (atymp, cM , α)
is contained within �, whereas the properties of the internal
cavity (Vcav, acyl, L) are contained in 	±. That is, we have
obtained the results first motivated in (5)–(7),
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� =
∞∑
m,n

umn(r, φ)
∫
umn

ρMdM�mn
∫
u2mn

, �tot =
∫
Smem

�(r, φ)dS,

(77)

	+ = − ρc2

Vcav
kL cot kL/2, 	− = ρc2

Vcav
kL tan kL/2. (78)

Subsituting the above expressions along with (76) into (72)
and (73) gives us the results mentioned at the start of this
section,

u0/L(r, φ)= 1

2

(
pL + p0

1 + �tot	+
∓ pL − p0

1 + �tot	−

)
�(r, φ) (79)

3.3.2 Convergence of �

Since the membrane frequency response �(r, φ), or equiv-
alently �tot in (77), is the summation of an infinite number
of eigenmodes, in order to proceed with a numerical analy-
sis of our model we first need to ensure that it converges to
a finite value. Through the Cauchy–Schwarz inequality, we
obtain

|�tot| ≤ Stymp

∑
m,n

Kmn/|ρMdM�m,n| < ∞ (80)

with Stymp as the tympanic area and Kmn as the coefficient
defined in (74). The former inequality is Cauchy–Schwarz,
the latter is a general characteristic of the spectrum of the
two-dimensional Laplacian associated with the eardrum; cf.
(30), (47), and Table 1. We now need to approximate �tot by
choosing an appropriate mode cutoff based on the hearing
range of the animal and the high damping at their corre-
sponding eigenfrequencies. In our analysis, we chose a cutoff
of N = 30 modes. The basic method involves arranging the
modes in increasing order of eigenfrequency (or equivalently
μmn). As a result, we can express the summation over a sin-
gle index. In general, for the frequency ranges of the animals
we are interested in, we need not calculate the summation
beyond the first 30 eigenmodes. The damping at these fre-
quencies sufficiently suppresses higher modes with respect
to the lower ones.

Before we compare our model with experimental data,
we take a look at the frequency dependence of individual
membrane vibrations in Fig. 12a, b. In both cases, the real
part �{�tot} has a low-pass response, i.e., it is more or
less frequency independent up to the membrane eigenfre-
quency f0 and sharply drops to zero afterward.The imaginary
part �{�tot}, on the other hand, has a band-pass response
where it peaks close to, but beyond f = f0 and falls off
thereafter. The properties of �{�tot} and �{�tot} will be
used to estimate membrane parameters in “Appendix” sec-
tion.Moreover, aswewill see in the next section, the behavior

(a) (b)

Fig. 12 Real (�) and imaginary (�) part of the membrane frequency
response for the ICE Model description of a Gecko and b Varanus. In
both cases, the response is dominated by the fundamental frequency of
the tympanic membrane. The presence of local maxima in the response
of Varanus is a result of its comparatively low membrane damping. The
frequency at which the response becomes purely imaginary is denoted
by f∗ and will be discussed in more detail in Sect. 4.5. Compare with
Figs. 17 and 18

Table 2 Sysem parameters

Parameter Gecko Varanus

Interaural distance L 22mm 16 mm

Eardrum radius atymp 2.6mm 2.6mm

Membrane density ρM 1mg/mm3 1.2mg/mm3

Eardrum thickness dM 10µm 30µm

Cavity volume Vcav 3.5ml 2.0ml

Cylinder radius acav 6.6mm 6.3mm

Fundamental frequency f0 1.05kHz 0.4kHz

Damping coefficient α ≈2611 s−1 ≈350 s−1

of the hearing cues (time and level differences) mirrors that
of the membrane response.

4 Comparison with experiments

With the expressions derived in (79),we can compare our ICE
model with experimental results. Using parameters based on
standard anatomical data (see Table 2) and an extracolumel-
lar angle β = π/30 (= 6◦), we get a membrane vibration
velocity of cM = 5.4m/s for the T. gecko (Gecko) and
cM = 2.9m/s for the water monitor (Varanus). This dif-
ference in cM/ f0 also results in considerable differences in
the nature of their hearing cues. Nevertheless, the ICEmodel
adequately explains the generation of hearing cues in both
species. In our subsequent computations, we take the speed
of sound in air to be c = 343ms−1 and the density of air as
ρ = 1.206 kgm−3.

4.1 Interaural transmission gain

In the earlier literature (Christensen-Dalsgaard and Manley
2008; Christensen-Dalsgaard et al. 2011) on hearing in ani-
mals with internally coupled ears, the effect of interaural
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coupling on eardrumvibrationwas quantifiedbymeans of the
so-called interaural transmission gain. This is defined as the
response ratio of eardrum vibrations to unilateral local stim-
ulation. In other words, calculating the ratio of the responses
of both eardrums to an external stimulus presented to a single
eardrum by using, for example, a closely placed headphone,
with the contralateral ear effectively receiving no external
input. The contralateral eardrum is therefore driven solely
by the internal pressure setup by the vibrations of the ipsilat-
eral one. A better understanding of ICE could nevertheless
be gained by instead studying the responses of both eardrums
to simultaneous and, therefore, realistic inputs separated by
a small direction-dependent time difference.

Without loss of generality, we can mathematically derive
the transmission gain GT by setting p0 = 0 and pL =
p exp(iωt) in (79). The resulting ipsi- and contralateral
eardrum vibration amplitudes are then used to calculate GT ,

u0/L(r, φ) = 1

2

(
p exp(iωt)

1 + �tot	+
∓ p exp(iωt)

1 + �tot	−

)
�(r, φ).

⇒ G−1
T =

(
u0
uL

)−1

= cos kL + Vcav sin kL

ρc2�totkL
. (81)

The mathematical expressions (78) for 	± allow us to reach
the considerably simplified formula (81).

In Fig. 13a, b, the values of the phase and amplitude of the
transmission gain calculated through ICE have been plotted
together with the experimentally determined values for (a)
Hemidactylus frenatus, the common house gecko, and (b)
the T. gecko. There is a fair agreement between calculated
and experimental values.

The minor discrepancy in Fig. 13b for Tokay can be
explained using the fact that there was a large size and hence
weight variation (24–70g) among the experimental speci-
mens (Christensen-Dalsgaard et al. 2011). Variations in size
lead to similar variations in the membrane fundamental fre-
quency and can lead to considerable changes in the frequency
behavior of the system. In the following sections, we will see
examples of this variation across two species when we com-
pare the frequency behavior for an adult gecko with that of a
juvenile varanus.

4.2 Decibel vibration velocity: vdB

In order to compare our model with experimental results, we
define the average vibration velocity in dB re mms−1 Pa−1,
meaning the decibel velocity with respect to 1mm/s for an
input pressure amplitude of 1Pa as vdB = 20 log10|u̇ave0/L |.
Fig. 14a, b show the respective frequency dependence of the
membrane vibrations for ipsilateral θ = 90◦ and contralat-
eral θ = −90◦ stimuli for both Gecko and Varanus.

In the case ofGecko, the contralateral response has a min-
imum near f0, whereas the spectral response of Varanus

(a)

(b)

Fig. 13 a experimental and calculated transmission gain for Hemi-
dactylus (common house gecko). The transmission gain GT is defined
as the response ratio of contra- and ipsilateral eardrum vibrations under
unilateral stimulation; see (81). The black lines correspond to val-
ues experimentally determined by Christensen-Dalsgaard and Manley
(2008) and the smooth solid (red) lines to values calculated to the ICE
model. Left amplitude in decibels and right phase in radians. b experi-
mental and calculated values of transmission gain for Tokay. The values
were experimentally measured by Christensen-Dalsgaard et al. (2011)
for five lightly anesthetized specimens. All the presented experimental
data have been gathered through laser Doppler vibrometry measure-
ments on the membrane surface. Left amplitude in decibels and right
phase in radians

shows multiple peaks corresponding to higher membrane
eigenfrequencies. The occurrence of multiple peaks instead
of a single one in the biophysically relevant range of up to
2kHz is due to the fact that the eardrum of Varanus is very
underdamped [much smaller α; cf. (30)], resulting in higher
modes being less suppressed. Nevertheless, the present ICE
model explains the frequency behavior in both cases and
allows for a determination of the tympanic fundamental fre-
quency in the alive animal; see the Appendix.

Figure 15a, b show the variation of the membrane vibra-
tion velocity with direction for different frequencies in Tokay
and Varanus, respectively. For both animals, the ipsilateral
ear is on the right-hand side and corresponds to positive val-
ues for the angle in degrees with respect to the rostral-caudal
axis. In both cases, the eardrum has a markedly higher vibra-
tion velocity for sounds coming from an ipsilateral than from
a contralateral direction.

4.3 Membrane vibration pattern

The measured vibration patterns (Manley 1972a) are shown
on the left in Fig. 16. The amplitudes were measured for
eight locations on the membrane to find the pattern seen in
the figure. At around 4kHz, the vibration pattern distinctly
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(a)

(b)

Fig. 14 Top experimental and calculated vdB for ipsi- (θ = 90◦) and
contralateral (θ = −90◦) stimuli for Gecko. Bottom experimental and
calculated membrane amplitude for Varanus at θ = ±90◦. The verti-
cal dashed lines in the lower plots correspond to the higher membrane
modes for the Varanus. We thus see that not only at f0 but also at higher
membrane resonances does a less taut membranewith low α give peaks;
compare Fig. 18b. The first resonant peak (or trough) allows a straight-
forward mathematical specification of the first extremum (max/min)
for the iLD or equivalently the tympanic eigenfrequency f0 in the alive
animal. All experimental data presented were gathered through laser
Doppler vibrometry. a Gecko. b Varanus

develops two maxima—something that would not happen
to a centrally loaded tympanum except at frequencies well
beyond the hearing range of Geckos (200Hz–3kHz).

In order to compare our ICE model with the experimental
results, we now plot the response of one of the membranes to
an ipsilateral stimulus. This is calculated by using (79) and
is illustrated in Fig. 16 (right) for the same frequency range
as that of the experimental data.

The asymmetric nature of our membrane vibration pat-
tern is a result of the chosen geometry. Mathematically, it is

(a) (b)

Fig. 15 Polar plots for the membrane vibration velocity in mm s−1

for different frequencies for a Gecko and b Varanus. Positive angles
correspond to ipsilateral directions and negative angles to contralateral
ones. The directionality of the system is immediately apparent from the
way inwhich ipsilateral directions result in higher vibration amplitudes,
even though the external inputs to the ears have the same amplitude.
The above plots have been generated using the expression given in (79)
using the parameters fromTable 2. The input sound pressures have been
assumed to have an amplitude of 60dB SPL

a result of the fact that a uniform pressure on the surface of
a full circular membrane only couples to the circularly sym-
metric J0 modes. The extracolumella, however, breaks this
symmetry and all the resulting eigenmodes couple with the
pressure, which offers a clear contrast to Fig. 9. As qualitative
and semiquantitative reproduction, the present model is very
strong, but for a full quantitative analysis, we would need to
take into account both the microstructure of the tympanum
and the motion of the extracolumella.

4.4 Internal time and level differences

Although the membrane vibration amplitudes are directional
by themselves, the difference between left and right tym-
panum is more sensitive to the source direction θ . In the
following, we focus on three universal aspects of ICE:

Fig. 16 Left experimental membrane vibration patterns of the T. gecko
dependent on sound frequency varying from 0.25 to 2kHz, with the cor-
responding frequencies shown above the membranes (Manley 1972a).
Right vibration pattern of one of the membranes in the ICE model for

an ipsilateral stimulus. In both cases, we see a similar complex vibra-
tional pattern for themembranes,whichbecomes increasingly circularly
asymmetric with increasing frequency
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1. the internal time difference (iTD), which for frequencies
< f0 greatly exceeds the interaural time difference (ITD)
and forms a plateau from f = 0 onwards;

2. the internal level difference (iLD), which exhibits a pro-
nounced maximum once the iTD has strongly decreased;
and

3. the fundamental frequency f0 of the tympanum segregat-
ing the iTD and iLD domain.

Both iTD and iLD also depend on the sound-source direction.
Moreover, the directionality of the hearing cues experienced
by the animal directly reflect the nature of the stimulus.
Finally, it should be constantly borne in mind that what the
animal actually “hears” is not the interaural but the internal
stimulus. These two may greatly differ.

The internal time difference (iTD) corresponds to the
actual time difference between left and right membrane
vibrations as experienced by the animal,

iTD = Arg
(
u̇aveL /u̇ave0

)
/ω = Arg

(
uaveL /uave0

)
/ω, (82)

uaveL /uave0 = (1 + B)/(1 − B) (83)

where

B = i
[
(1 + �tot	+) / (1 + �tot	−)

]
tan(k�/2) (84)

is direction-dependent through � = L sin θ . The expression
can be easily derived using the expressions for uave0 and uaveL
in (79),

uaveL

uave0
= p+(1 + �tot	−) + p−(1 + �tot	+)

p+(1 + �tot	−) − p−(1 + �tot	+)

=
1 + p−

p+ (1 + �tot	+)/(1 + �tot	−)

1 − p−
p+ (1 + �tot	+)/(1 + �tot	−)

= 1 + i tan(k�/2)(1 + �tot	+)/(1 + �tot	−)

1 − i tan(k�/2)(1 + �tot	+)/(1 + �tot	−)
.

(85)

The last step follows from the fact that

p+ = pL + p0 = p (exp(ik�/2) + exp(−ik�/2))

= 2p cos k�/2,

p− = pL − p0 = p (exp(ik�/2) − exp(−ik�/2))

= 2i p sin k�/2.

The interaural time difference (ITD) for a given sound
input (2) is Arg (p0/pL) /ω = L sin θ/c, viz., the time dif-
ference between the arrival of sound from a given source at
both ears. It is independent of frequency, and for our para-
meters, it is ≈64µs for θ = ±90◦ for Gecko and ≈45µs

(a)

(b)

Fig. 17 Frequency and direction dependence of the iTDs for a Gecko
(top) and b Varanus (bottom). a For Gecko, the iTDs exhibit a plateau
of iTD ≈ 3.5 ITD, up to about f = f0 and sharply fall thereafter. As
indicated, the plateau is uniform, irrespective of the direction θ . Due to
the plateau, the iTDs can thus be effective low-frequency cues. b For
Varanus, the iTDs slowly increase up to f0 and then decrease; the dis-
continuity is an artifact of 2π which corresponds to a loss of directional
information in the iTD. The young animal can therefore only exploit a
restricted low-frequency range of iTDs (up to approximately 200Hz),
nevertheless, illustrating that the time expansion factor iTD/ITD can
differ from 3 appreciably

for a young Varanus. Figure 17a, b show the frequency and
direction dependence of the internal time difference (iTD) for
Gecko andVaranus, respectively. Experimentally, bymeasur-
ing the phase difference between the eardrum vibrations, one
in fact measures the iTD.

In the case of Gecko, the iTDs have a low-pass response,
i.e., they are more or less constant up to a certain frequency
and drop sharply thereafter, with iTD/ITD = 1 at f ≈ f0.
From a neuronal-processing point of view, this is convenient
as it mirrors the behavior of the ITDs, but strongly increased
by a factor of about 3.5 for 0 ≤ f � 2

3 f0 in Gecko and an
astounding 15 for 0 ≤ f � 0.2 f0 in Varanus; cf. Fig. 17a, b
(left). The number 3.5 depends on the specific geometry of
the internal cavity as found in many lizards, such as Gecko,
but it is not unique. Figure 17b illustrates its variation for
Varanus.

For the input (2), the internal Level Difference (iLD) is
defined as the logarithmic difference between the left and
right (0/L) membrane amplitudes of (46), i.e.,

iLD =20 Log10|uaveL /uave0 | = 20 Log10|u̇aveL /u̇ave0 |, (86)

Once left and right inputs effectively have the same ampli-
tude, we can put the interaural level difference (ILD) equal
to zero. For Gecko, the iLD has a band-pass like behavior.

123



376 Biol Cybern (2016) 110:359–382

(a)

(b)

Fig. 18 Calculated frequency and direction dependence of the iLDs
for a Gecko (top) and b Varanus (bottom). The location of the eigen-
frequencies has been indicated by dashed arrows. For Gecko, the iLDs
peak close to f = f0 and decrease slowly thereafter. They can therefore
serve both as effective high-frequency hearing cues and as an efficient
means of determining f0 in alive animals. Clearly, the higher tym-
panic eigenmodes play no role. For juvenile Varanus with small α and
f0 ≈ 500Hz, we see the corresponding peaks of some (at least five)
higher membrane eigenmodes

It is zero for both very low and high frequencies and peaks
close to the membrane eigenfrequency f0; cf. Fig. 18a. The
iLDs steeply increase across θ = 0◦ and attain a maxi-
mum/minimum at θ = ±90◦. Under normal circumstances,
as in Gecko, the functional dependence is given by a sine.
For Varanus, Fig. 18b shows an iLD spectrum with multi-
ple peaks nearmembrane resonances (i.e., eigenfrequencies),
corresponding to a much lower damping (smaller α). More-
over, at the fundamental membrane eigenfrequency f0, the
directional response peaks at θ = ±30◦. A possible expla-
nation of this deviating behavior is that the experiments
were performed on juvenile monitor lizards, suggesting that
increased membrane damping and cavity volume in adults
should give similar results to those shown for the adult
Gecko.

4.5 Role of the membrane response function �

A parallel between the frequency response of the internal
time and level differences (iTD and iLD), and the mem-
brane frequency response�(r, φ) (5) should be immediately
apparent; compare Figs. 12, 17 and 18. This similarity results
from the way in which we have defined the ratio of the com-
plex vibration amplitudes (83), (84). Furthermore, it explains
the role of the membrane eigenfrequency in the generation
of interaural cues. Using our definition of B (83), the ratio

between the membrane vibration amplitudes can therefore
be rewritten as,

uaveL /uave0 = exp(ik�/2)+�tot(	− cos k�
2 + i	+ sin k�

2 )

exp(−ik�/2) + �tot(	− cos k�
2 − i	+ sin k�

2 )
.

We now focus on the case where the sound source is at
θ = π/2(= 90◦) and, subsequently,� = L . This means that
the sound source is on the same side as the L ear; cf. Fig. 7.
The ratio between the membrane vibrations can therefore be
explicitly written down

uaveL /uave0 = exp(ikL/2) + �̃tot(sin kL/2 − i cos kL/2)

exp(−ikL/2) + �̃tot(sin kL/2 + i cos kL/2)
,

= exp(ikL/2) − i�̃tot exp(ikL/2)

exp(−ikL/2) + i�̃totexp(−ikL/2)
,

= exp(ikL)
1 − i�̃tot

1 + i�̃tot
. (87)

We have used the definitions of 	± from (78) and absorbed
the factor ρc2kL/Vcav into �tot by defining

�̃tot = ρc2kL�tot/Vcav. (88)

From Fig. 12a, b, we can see that there is a frequency f∗
where the membrane response becomes purely imaginary.
Let us assume that at this point, �̃tot = iη where η is a
positive real number which carries information about both
the tympanic membrane as well as the internal cavity. The
ratio (87) reduces to

uaveL /uave0 = exp(ikL)
1 + η

1 − η
. (89)

The right-hand side of the above equation is a phase factor
multiplied by a real number. The argument of the quantity
kL is equal to the phase difference between the inputs to the
eardrums and, due to our definition of iTD (82), the resultant
internal time difference between the ears equals the interau-
ral time difference. The corresponding values for f∗ can be
calculated numerically and are found to be around 1097 Hz
for Gecko and around 402 Hz for Varanus.

For directions other than θ = 90◦, a similar result can be
obtained, but the exact value of f∗ in this case would also
depend on the cavity volume. It is only when the source is
fully ipsilateral/contralateral to an ear, that f∗ can be deter-
mined solely from the membrane parameters.

4.6 iTD/iLD transition

From the low-pass behavior of the iTDs and the high-pass
behavior of the iLDs, we can infer that internal time differ-
ences may well work as effective cues at lower frequencies,
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Fig. 19 Transition between the iTD and iLD frequency regimes for
directions θ 
= 0◦. At lower frequencies, iTDswork better as directional
cues, e.g., with iTD/ITD ≈3 for adult lizards, while at higher frequen-
cies, the iLDs become pronounced, even though for most lizards, the
external I LD ≈ 0. The transition between the two kinds of cues is
governed by the eardrum’s fundamental eigenfrequency f0

whereas internal level differences aremost effective at higher
frequencies. Unlike larger animals where such a transition
would rely on the fact that higher-frequency sound waves
would have a “shadow” on the contralateral eardrum due to
diffraction (p. .154 Fletcher 1992), the iTDs and iLDs in ICE
are generated solely as a consequence of the internal coupling
between the eardrums.

In animals with ICE, the transition between the different
frequency regimes is governed by the fundamental frequency
of the tympanic membrane; see Fig. 19. Despite the lack of
an amplitude difference between the inputs, the system uses
small phase differences to generate frequency-dependent
time (or equivalently phase) and amplitude differences
between the eardrums by using the internal coupling and
the mechanics of the membrane.

4.7 Volume dependence

In the ICE Model, the volume of the internal cavity is an
independent parameter, which determines the strength of the
internal coupling and in a mathematical analysis can be used
at will. That is, to satisfy our scientific curiosity. In Fig. 20a,
b, we see the frequency dependence of the iTDs and iLDs (at
source direction θ = 90◦) for different cavity volumes while
keeping the other system parameters fixed. The lower limit
of possible cavity volumes is equal to that of a cylinder with
a radius equal to that of the membrane, i.e., acyl ≥ atymp,
leading to a cross-sectional area of πa2tympL .

The volume dependence arises from the coupling para-
meters 	± defined in (7) which decrease with the volume as
1/Vcav. This means that as we let the volume go to infinity
while keeping the interaural distance L constant (acyl → ∞),
the eardrums vibrate as uncoupled membranes driven by the
sound pressures p0/L

u0/L(r, φ; t) = �(r, φ)p0/L . (90)

(a)

(b)

Fig. 20 iTD and iLD frequency response for different cavity volumes
for a Gecko (top) and b Varanus (bottom). The sound source direction
was chosen to be θ = 90◦. As we increase Vcav, the iLDs become
smaller and less sharp around f0. The iTDs on the other hand increase
with decreasing volume, but also result in a phase ambiguity of 2π

close to f0. At an optimal volume of ≈2.2 cc for the T. gecko and 6cc
for Varanus, we have an optimal frequency response for both hearing
cues

�(r, φ) essentially gives us the frequency response of the
membrane amplitude at a given point (r, φ) on its surface.

For Gekko as well as for Varanus, the iLD goes to zero
for small volumes. The iTD, on the other hand, appears to
increase. However, it loses its plateau which is important
for auditory information processing for low frequencies and
develops a phase ambiguity of 2π close to f0. This means
that the eardrums vibrate with a phase difference of π and
can no longer be used to localize sound sources. Thus, both
very small and very large volumes effectively break the cou-
pling between the membranes. For the Tokay, we find an
optimal response, i.e., flat amplified iTDs at low frequen-
cies and strong iLDs at higher frequencies for Vcav ≈ 2.2 cc.
This could be due to the fact that the assumed volume of
3.5cc is for an “empty” skull. A live specimen would have a
tongue and other organs inside the pharyngeal cavity which
reduce the effective volume so that only the pharyngeal cavity
remains.

Rathermore interesting is the fact that for larger cavity vol-
umes (≈6 cc), the frequency response of the iLDs and iTDs
of Varanus become similar to that of the Gekko; cf. Fig. 20b,
solid (red) lines. The local iLD maxima corresponding to
higher membrane modes are suppressed and the iTD has a
fairly smooth and flat response at lower frequencies. This
implies that the hearing system of an adult Varanus would
me more effective at localizing sound sources, at least over
a larger frequency range.
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4.8 Critical volume

In Fig. 20a, b, we see that for a certain value of Vcav, a singu-
larity appears for the iLD close to f0 for a source direction
θ = 90◦. A comprehension of what causes this singularity to
emerge is essential to a complete understanding of ICE. The
physical explanation for this apparent singularity is that at
the critical volume, the internal pressure at the contralateral
membrane cancels the external pressure at the frequency of
maximal iLD response. As a result, the contralateral mem-
brane vibration velocity, or equivalently the displacement,
vanishes entirely, i.e., u0(r, φ; t) = 0. Hence, by definition,
the iLD is bound to diverge.

This result can be derived directly from the expression for
the membrane displacement (4). Rewriting u0 explicitly in
terms of input pressure amplitude and direction gives us

u0(r, φ) = 1

2

(
2p cos k�/2

1 + �tot	+
− 2i p sin k�/2

1 + �tot	−

)
�(r, φ).

For a sound source closer to the L ear, the opposite 0 ear
is on the contralateral side; see Fig. 7. We thus have � =
L sin θ = L for θ = π/2 (= 90◦). The displacement can be
rewritten as

u0(r, φ) =
(

p cos kL/2

1 + �tot	+
− i p sin kL/2

1 + �tot	−

)
�(r, φ)

where the 1/2 has been absorbed into the brackets. As shown
in Sect. 4.5, the frequency where iT D = I T D, viz., f∗,
is achieved when the membrane frequency response � (5)
becomes purely imaginary. As derived in (88) let us suppose
that �̃tot( f = f∗) = iη, where η is a real number and
consider the case where Vcav = ρc2kLη so that the factor
ρc2kLη
Vcav

in the denominators beside the tan and cos becomes
equal to 1. Using the definitions of 	± (7) at f = f∗, we find

u0(r, φ) =
(

p cos kL/2

1 − i cot kL/2
− i p sin kL/2

1 + i tan kL/2

)
�(r, φ),

=
(

i p sin kL/2

1 + i tan kL/2
− i p sin kL/2

1 + i tan kL/2

)
�(r, φ),

= 0.

In the second equation, we have multiplied and divided the
first fraction by i tan kL/2. It is thus clear that for this cav-
ity volume, the membrane displacement on the contralateral
side identically vanishes resulting in a singularity of the iLD,
actually a trivial one. Nevertheless we can safely use the term
“critical” to denote this cavity volume Vcrit = ρc2kLη.

For the animal, Vcrit is not an optimal cavity volume to
fully exploit interaural coupling. This is mainly due to the
fact that the iTD response starts to show a phase ambiguity
on either side of f∗; cf. Fig. 20b (right). The animal would be

unable to distinguish between sources on the left and the right
and would therefore be better off by operating with a cavity
volume slightly above Vcrit , where a strong iLD is coupled
with an unambiguous iTD response.

This is also a possible explanation of the deviations
observed in the hearing cues for the juvenile Varanus when
we compare itwithGecko. Given its other systemparameters,
i.e., membrane eigenfrequency, damping, interaural separa-
tion, the volume of 2.0cc in Varanus is well below its Vcrit
of 6cc.

5 Discussion

In this review, we have shown that by modeling the internal
cavity as an air-filled cylinder, we can simultaneously calcu-
late the quasi-steady-state vibration amplitudes of a pair of
coupled membranes as well as the internal pressure driving
them.Using these amplitudes,wewere able to calculate hear-
ing cues such as the internal time and level differences in (82)
and (86). These are functions of direction and frequency and
represent cues experienced by the animal.

The presence of the extracolumella has been accounted
for by modeling the eardrum as a circular membrane with a
non-moving sector of angle 2β; cf. Fig. 1c. As a result, we
were able to reproduce the complex asymmetrical vibration
patterns observed in live gecko specimens. In order, however,
to exactly determine thevibrationpatterns observed innature,
we need to account for the microstructure of the tympanum
and any associated inhomogeneities in its surface tension in
the specific animal under consideration. This is outside the
scope of the present review.

In the first biophysical model of ICE (Vossen et al. 2010;
Vossen 2010), the volume of the cylinder was fixed by the
interaural distance L and tympanic radius atymp. By instead
allowing the volume of the cylinder to be a free parameter
and using it to calculate the radius of the cylinder, we were
able to analyze its effect on the coupling between the mem-
branes in three different animal classes: frogs, lizards, and
birds. Both very large and very small volumes effectively
break the coupling between the membranes, albeit in dif-
ferent ways. Moreover, through a thorough analysis of the
tympanic membrane, we were able to discern its relationship
to the cavity volume in Sect. 4.8. This way, the animal could
possibly “tune” its eardrum by varying its tension in order
to optimize interaural coupling for a certain frequency range
(Young et al. 2016).

With ICE, we have therefore come across a hearing sys-
tem that relies on iTDs at low frequencies and iLDs at higher
frequencies, with the transition between the two regimes
being governed by the fundamental frequency f0 of the tym-
panic membrane; see Fig. 19. In this way the fundamental
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frequency of the eardrum creates a partition of the sensory
landscape.
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Appendix: Estimating the eardrum’s fundamental
frequency and damping coefficient

The fundamental frequency f0 and the damping coefficient
α of the eardrum are important quantities to auditory per-
formance. The former to partitioning the auditory landscape,
the latter to determining the duration of transient response
of the tympanum. How, then, can we determine them in the
practice of experiment?

Todetemineboth,weneed twoquantities fromexperimen-
tally measured tympanic vibration and hearing cues. As we
see from Figs. 17 and 18, the maximum of the iLD as well
as the frequency f∗ at which, for say sound-source direc-
tions θ = ±90◦, the internal iTD equals the external ITD are
experimentally accessible and near f0.

We can analytically estimate the location of the iLDmaxi-
mum and determine f∗ in terms of f0 by using the properties
of the membrane frequency response� or, more specifically,
�’s integral over the membrane surface �tot; cf. (77). An
experimental recipe follows at the end of this appendix. �tot

has been defined as

�tot =
∫
Smem

dS �(r, φ) =
∞∑
m,n

Kmn/�mn (91)

where

Kmn =
(∫

umn
)2

ρMdM
∫
u2mn

, �mn =
(
ω2 − ω2

mn − 2iαω
)

.

(92)

We can now explicitly split �tot into its real and imaginary
parts,

�{�tot} =
∞∑
m,n

Kmn

(
ω2−ω2

mn

)
/

[(
ω2 − ω2

mn

)2 +4α2ω2
]
,

(93)

�{�tot} =
∞∑
m,n

Kmn2αω/

[(
ω2 − ω2

mn

)2 + 4α2ω2
]

. (94)

�{�tot} and�{�tot}have been plotted forGekko andVaranus
in Fig. 12a, b, respectively.We see that for a certain frequency
f∗,�{�tot} = 0. In Sect. 4.5 we have also shown that exactly
at f = f∗ the internal time difference iTD becomes equal to
the interaural time difference ITD. Furthermore, it is possible
to measure the corresponding iLD at f∗. Using the definition

(89) of the membrane vibration–amplitude ratio at f∗ and
recalling that ρc2kL�tot/Vcav

∣∣
f = f∗ = iη, we obtain

iLD| f= f∗ = 20 log10

∣∣∣∣u
ave
L

uave0

∣∣∣∣ = 20 log10
1 + η

1 − η

⇒ η = 10iLD/20 − 1

10iLD/20 + 1
. (95)

Thus, bymeasuring the iLD at f∗, we can calculate the imag-
inary part of the membrane frequency response as well. We
should also note here that η is a dimensionless quantity. The
resulting nonlinear equations in α and ωmn are given by

�{�tot}| f = f∗ =
∞∑
m,n

Kmn
(
ω2∗ − ω2

mn

)
(
ω2∗ − ω2

mn

)2 + 4α2ω2∗
= 0 (96)

�{�tot}| f = f∗ =
∞∑
m,n

Kmn2αω∗(
ω2∗ − ω2

mn

)2 + 4α2ω2∗
= ηVcav

ρcLω∗
(97)

where ω∗ = 2π f∗. We have also used the fact that k = ω/c.
Given the above equations, the problem boils down to calcul-
ing f0 = ω11/2π and α as the remaining eigenfrequencies
are related to the fundamental eigenfrequency by fmn/ f0 =
ωmn/ω11 = μmn/μ11. Hereμmn is the nth zero of the Bessel
function Jκ ; cf. (39).

Having determined f∗ aswell asη through the correspond-
ing iLD based on membrane vibration amplitudes, it would
be possible to use (96) and (97) to obtain estimates for f0 and
α. This can be done by using standard iterative algorithms
to find the roots of functions. A common example is the
Newton–Raphson method (Ch. 5 Stoer and Bulirsch 2002).
For a real-valued function f , in order to find an approxima-
tion for its roots x : f (x) = 0 we start with an initial guess
of x0. A better approximation for x is then given by

x1 = x0 − f (x0)

f ′(x0)

xn+1 = xn − f (xn)

f ′(xn)
.

To find a root for a system of two equations (x, y) :
g1(x, y) = 0, g2(x, y) = 0 in two dimensions, we would
instead need to calculate the appropriate Jacobian matrix,

J =
(

∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
.

The corresponding iteration rule is given by

(
xn+1

yn+1

)
=

(
xn
yn

)
− J

−1
(
g1(xn, yn)
g2(xn, yn)

)
. (98)

In dimensions higher than 2, it is more feasible to multiply
both sides of (98) by J and to solve the resulting system.
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Since we only need to estimate two values, the inverse of
the Jacobian can be easily calculated. The relevant variables
for our numerical problem are x = f0 and y = α and the
corresponding equations are given by

g1( f0, α) = �{�tot}| f = f∗ = 0 (99)

g2( f0, α) = �{�tot}| f= f∗ − ηVcav
ρcLω∗

= 0. (100)

The derivatives needed to calculate the Jacobian are given by

∂�{�tot}
∂ f0

= 2

f0

∞∑
m,n

Kmnω
2
mn

((
ω2∗ − ω2

mn

)2 − 4α2ω2∗
)

∣∣�∗
mn

∣∣4
(101)

∂�{�tot}
∂α

= 8αω2∗
∞∑
m,n

Kmn
(
ω2∗ − ω2

mn

)
∣∣�∗

mn

∣∣4 , (102)

∂�{�tot}
∂ f0

= 8αω∗
f0

∞∑
m,n

Kmn
(
ω2∗ − ω2

mn

)
ω2
mn∣∣�∗

mn

∣∣4 , (103)

∂�{�tot}
∂α

= 2ω∗
∞∑
m,n

Kmn

((
ω2∗ − ω2

mn

)2 −4α2ω2∗
)

∣∣�∗
mn

∣∣4 . (104)

where �∗
mn = (

ω2∗ − ω2
mn − 2iαω∗

)
. The Newton–Raphson

method converges quadratically to the correct value of the
root.

In order to simplify the estimation of the relevant parame-
ters, it would be prudent to separate the dependence on the
size of the membrane from terms that arise independently in
the mathematical analysis. Specifically, we look at the coef-
ficients Kmn as given by (92). Writing the integrals in the
numerator and denominator explicitly we obtain

∫
dS umn =

∫ 2π−β

β

sin κ(φ − β) dφ
∫ atymp

0
r Jκ (μmnr) dr

= 1

κ
[1 − cosmπ ]

∫ atymp

0
r Jκ (μmnr) dr (105)

and

= a2tymp

κ
[1 − cosmπ ]

∫ 1

0
r̃ Jκ

(
atympμmnr̃

)
dr̃

∫
dS u2mn =

∫ 2π−β

β

sin2 κ(φ−β) dφ
∫ atymp

0
r J 2κ (μmnr) dr

= (π − β)

∫ atymp

0
r J 2κ (μmnr) dr (106)

= (π − β)a2tymp

∫ 1

0
r̃ J 2κ

(
atympμmnr̃

)
dr̃

where r̃ = r/atymp. Recall that atymp × μmn corresponds to
the nth zero of Jκ . We have thus separated the geometrical

Table 3 Numerical parameters needed for estimating f0 and α

m n μmn × atymp K̃mn

1 1 3.16602 0.3833

3 1 4.56064 0.04463

5 1 5.87051 0.01583

7 2 6.30889 0.02812

9 1 7.13348 7.822 × 10−3

11 2 7.79759 4.13 × 10−4

13 1 8.36586 4.56 × 10−3

15 2 9.21062 5.666 × 10−8

17 3 9.45094 0.03299

19 1 9.57637 2.938 × 10−3

21 2 10.5742 3.541 × 10−5

23 1 10.7703 2.026 × 10−3

25 3 10.9788 4.775 × 10−3

27 2 11.9022 6.028 × 10−5

29 1 11.9512 1.467 × 10−3

31 3 12.443 2.01 × 10−3

33 4 12.5928 8.459 × 10−3

35 1 13.1214 1.103 × 10−3

37 2 13.2033 6.768 × 10−5

39 3 13.8616 1.135 × 10−3

parameter atymp from the Bessel integrals in (105) and (106).
Furthermore, we see that the integral in (105) is nonzero (and
equal to 2) only for odd values of m as cosmπ = 1 for even
m.

For κ[m] = 0.5 mπ/(π − β), m = 1, 3, 5, . . ., we can
rewrite Kmn

Kmn = 16

π2

Stymp

ρMdM
K̃mn,

K̃mn =

(∫ 1

0
r̃ Jκ

(
atympμmnr̃

)
dr̃

)2

m2

∫ 1

0
r̃ J 2κ

(
atympμmnr̃

)
dr̃

. (107)

whereStymp = (π − β)a2tymp is the surface area of the tym-

panum. The values of K̃mn for 20 modes are given in Table 3
and are arranged in a descending order of Kmn/μ

2
mn, which

is the value of�tot at f = 0. The K̃mn are independent of the
size of themembrane and depend only on the extracolumellar
angle β.

Numerical calculations in experimental practice

In practice, we would need to choose an appropriate cutoff
for themembrane eigenmodes. Ideally,we have to ensure that
the last eigenmode has a frequency well above the hearing
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Table 4 Estimated f∗ and η

Gekko Varanus

f∗ (Hz) 1097.78 402.664

η 0.666 1.697

range of the animal. In order to test ourmethod for the numer-
ical estimation of f0 and α, we have started by performing
simulations for Gekko and Varanus while using the first 70
membrane eigenmodes, with the 70th mode corresponding
to an eigenfrequency of around 11.7 and 4.45kHz for Gekko
and Varanus, respectively;—well beyond the hearing range
of either species. The estimated values of f∗ and η are shown
in Table 4. In a real-world experimental setup, these values
would correspond to those estimated from measured mem-
brane vibration amplitudes and phases.

We seek to test the accuracy of our method by assuming
that the values calculated for 70 modes were obtained exper-
imentally. In passing, “were” is meant to be a subjunctive.
Thiswaywe can test the performance of the algorithm in case
the experimenter only chooses a limited number of modes.
To do so, we would first need initial guesses for f0 and α.
For the fundamental frequency we can take f∗ itself as eye-
balling the iTD plots tells us that the values are fairly close to
each other; cf. Fig. 17a, b. Based on the behavior of the mem-
brane response as shown in Fig. 14a, b, one can conclude that
the system is overdamped for Gekko and underdamped for
Varanus. The value of the damping in the former would be
>ω∗/4 and <ω∗/4 in the latter.

Given an initial guess, we can calculate the values of
�{�tot} and �{�tot} at these values of f0 and α from Eqs.
(96) and (97). The value of the Jacobian can similarly be
calculated by plugging these values into Eqs. (101)–(104)
along with the values of K̃mn given in Table 3. Thereafter
one can iteratively use the Newton–Raphson method (98)
until a suitable convergence is reached.

The simulation was performed for Nmodes = 1, 2, 5, 10,
15, 20, and 25 modes. The results of the simulation are pre-
sented in Table 5. For both Gekko and Varanus, we see that
with an increasing number of eigenmodes used, the values
converge to the quantities defined in Table 2. The slower con-
vergence and apparent oscillation in α forGekko is due to the
higher value of its damping, which causes a greater differ-
ence between f∗ and f0. However, we must be careful while
choosing initial guesses for Varanus as its lower damping
results in a larger number of extrema and roots, and a sim-
ulation might converge to a point corresponding to a higher
eigenmode. In practice, five modes are more than sufficient
for good convergence in both f0 and α. As a side remark, we
need to emphasize that the numbers behind the decimal point
in Tables 4 and 5 are experimentally irrelevant but are there
just to demonstrate the accuracy of the numerical procedure.

Table 5 Simulation results

Nmodes Gekko Varanus

f0 (Hz) α
(
s−1

)
f0 (Hz) α

(
s−1

)

1 1097.78 2490.72 402.664 347.637

2 1074.34 2589.08 401.074 349.942

5 1058.12 2611.35 400.333 350.108

10 1052.66 2612.18 400.108 350.046

15 1051.89 2612.09 400.077 350.034

20 1051.02 2611.87 400.041 350.02

25 1050.92 2611.84 400.037 350.018

Exact 1050 2611.45 400 350

In summary, and focusing on f0, as a rule of thumb one
can take the location of the minimum of the contralateral
amplitude on the tonotopic axis or, equivalently, the max-
imum of the iLD or, if one likes f∗ as the fundamental
frequency f0, the error being at most 5%. Determining the
damping coefficient α is a bit more work. The procedure
outlined in Eqs. (96)–(107) gives us a systematic method to
approximate α from the membrane vibrations for an arbi-
trary number of modes. In Table 5, we see that assuming
f∗ to be the fundamental frequency, which is equivalent to
assuming f0 = f∗, gives us a value of α with an error
of at most 5%. Taking into account the second mode fur-
ther reduces the error to within 1%. In fact, for the case of
a single mode, the expression for α can be written down
explicitly by substituting ω0 = ω11 = ω∗ in (97) giving
us

K11

2αω∗
= ηVcav

ρcLω∗
. (108)

⇒ α = ρcLK11

2ηVcav
= 8ρcL

π2Vcav

Stymp

ρMdM

K̃11

η
. (109)

We thus have (109) as an expression for the membrane
damping coefficient α given only the geometrical and mate-
rial parameters (thickness and density) of the membrane
and cavity and η—the iLD measurement at a given fre-
quency.
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